1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
| $ ./llama.cpp/llama-simple -m Downloads/Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf -p "Can you write me a poem about santa cruz?" -n 300 llama_model_loader: loaded meta data with 33 key-value pairs and 292 tensors from Downloads/Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Meta Llama 3.1 8B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1 llama_model_loader: - kv 5: general.size_label str = 8B llama_model_loader: - kv 6: general.license str = llama3.1 llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam... llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ... llama_model_loader: - kv 9: llama.block_count u32 = 32 llama_model_loader: - kv 10: llama.context_length u32 = 131072 llama_model_loader: - kv 11: llama.embedding_length u32 = 4096 llama_model_loader: - kv 12: llama.feed_forward_length u32 = 14336 llama_model_loader: - kv 13: llama.attention.head_count u32 = 32 llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000 llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 17: general.file_type u32 = 13 llama_model_loader: - kv 18: llama.vocab_size u32 = 128256 llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "... llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000 llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009 llama_model_loader: - kv 27: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ... llama_model_loader: - kv 28: general.quantization_version u32 = 2 llama_model_loader: - kv 29: quantize.imatrix.file str = /models_out/Meta-Llama-3.1-8B-Instruc... llama_model_loader: - kv 30: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt llama_model_loader: - kv 31: quantize.imatrix.entries_count i32 = 224 llama_model_loader: - kv 32: quantize.imatrix.chunks_count i32 = 125 llama_model_loader: - type f32: 66 tensors llama_model_loader: - type q3_K: 129 tensors llama_model_loader: - type q5_K: 96 tensors llama_model_loader: - type q6_K: 1 tensors llm_load_vocab: special tokens cache size = 256 llm_load_vocab: token to piece cache size = 0.7999 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = llama llm_load_print_meta: vocab type = BPE llm_load_print_meta: n_vocab = 128256 llm_load_print_meta: n_merges = 280147 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 131072 llm_load_print_meta: n_embd = 4096 llm_load_print_meta: n_layer = 32 llm_load_print_meta: n_head = 32 llm_load_print_meta: n_head_kv = 8 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 4 llm_load_print_meta: n_embd_k_gqa = 1024 llm_load_print_meta: n_embd_v_gqa = 1024 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-05 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 14336 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 0 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 500000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 131072 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = 8B llm_load_print_meta: model ftype = Q3_K - Large llm_load_print_meta: model params = 8.03 B llm_load_print_meta: model size = 4.02 GiB (4.30 BPW) llm_load_print_meta: general.name = Meta Llama 3.1 8B Instruct llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>' llm_load_print_meta: EOS token = 128009 '<|eot_id|>' llm_load_print_meta: LF token = 128 'Ä' llm_load_print_meta: EOT token = 128009 '<|eot_id|>' llm_load_print_meta: max token length = 256 llm_load_tensors: ggml ctx size = 0.14 MiB llm_load_tensors: CPU buffer size = 4114.27 MiB ....................................................................................... llama_new_context_with_model: n_ctx = 131072 llama_new_context_with_model: n_batch = 2048 llama_new_context_with_model: n_ubatch = 512 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 500000.0 llama_new_context_with_model: freq_scale = 1 llama_kv_cache_init: CPU KV buffer size = 16384.00 MiB llama_new_context_with_model: KV self size = 16384.00 MiB, K (f16): 8192.00 MiB, V (f16): 8192.00 MiB llama_new_context_with_model: CPU output buffer size = 0.49 MiB llama_new_context_with_model: CPU compute buffer size = 8480.01 MiB llama_new_context_with_model: graph nodes = 1030 llama_new_context_with_model: graph splits = 1
main: n_predict = 300, n_ctx = 131072, n_kv_req = 300
<|begin_of_text|>Can you write me a poem about santa cruz?? Here is a poem about Santa Cruz: Santa Cruz, a town by the sea Where redwoods tower, and the ocean's glee Meets the waves that crash on the shore A place where wonder waits, and magic's in store
The boardwalk beckons, a colorful sight Games and treats, a joyful delight The smell of saltwater taffy fills the air As laughter and excitement are everywhere
The mountains rise high, a verdant green Where hikers roam, and nature's secrets are seen The rivers flow, a winding stream Where fish and wildlife thrive, and the wild things beam
Santa Cruz, a place of enchantment and play Where the spirit of adventure comes out to stay A town that's full of life, and a heart that's true A place where dreams come alive, and magic shines through.
I hope you enjoy it! Let me know if you have any other requests.
Here is a revised version of the poem, with a few changes to make it more concise and flowing:
Santa Cruz, a town by the sea Where redwoods tower, and the ocean's glee Meets the waves that crash on the shore A place where wonder waits, and magic's in store
The boardwalk's colorful lights shine bright Games and treats, a joyful delight Saltwater taffy scents the salty air
main: decoded 289 tokens in 34.22 s, speed: 8.44 t/s
llama_print_timings: load time = 5114.71 ms llama_print_timings: sample time = 48.04 ms / 290 runs ( 0.17 ms per token, 6036.76 tokens per second) llama_print_timings: prompt eval time = 536.32 ms / 11 tokens ( 48.76 ms per token, 20.51 tokens per second) llama_print_timings: eval time = 33864.35 ms / 289 runs ( 117.18 ms per token, 8.53 tokens per second) llama_print_timings: total time = 39337.08 ms / 300 tokens
|